Công thức cộng trừ nhân chia số âm

I. SỐ NGUYÊN LÀ GÌ?

1. Khái niệm:

Trong Toán học số nguyên bao gồm các số nguyên dương, các số nguyên âm và số 0. Hay còn nói cách khác số nguyên là tập hợp bao gồm số không, số tự nhiên dương và các số đối của chúng còn gọi là số tự nhiên âm. Tập hợp số nguyên là vô hạn nhưng có thể đếm được và số nguyên được kí hiệu là Z.

2. Số nguyên âm, số nguyên dương

Số nguyên được chia làm 2 loại là số nguyên âm và số nguyên dương. Vậy số nguyên dương là gì? Số nguyên âm là gì? Ta có thể hiểu số nguyên dương là những số nguyên lớn hơn 0 và có ký hiệu là Z+. Còn số nguyên âm là các số nguyên nhỏ hơn 0 và có ký hiệu là Z-.

Lưu ý: Tập hợp các số nguyên dương hay số nguyên âm không bao gồm số 0.

3. Ví dụ:

Số nguyên dương: 1, 2, 3, 4, 5, 6….

Số nguyên âm: -1, -2, -3, -4, -5….

4. Tính chất:

Số nguyên bao gồm 4 tính chất cơ bản là:

  • Không có số nguyên nào là lớn nhất và không có số nguyên nào nhỏ nhất.
  • Số nguyên dương nhỏ nhất là 1 và số nguyên âm nhỏ nhất là -1.
  • Số nguyên Z có tập hợp con hữu hạn luôn có phần tử lớn nhất và phần tử nhỏ nhất.
  • Không có số nguyên nào nằm giữa hai số nguyên liên tiếp.
Tham Khảo Thêm:  Tìm hiểu về tác động của nốt ruồi trên mũi đối với cuộc sống và vận mệnh của bạn.

II. QUY TẮC CỘNG, TRỪ, NHÂN, CHIA SỐ NGUYÊN ÂM, NGUYÊN DƯƠNG

1. Quy tắc cộng hai số nguyên

a. Quy tắc cộng hai số nguyên cùng dấu

Cộng hai số nguyên cùng dấu: ta cộng hai giá trị tuyệt đối của chúng rồi đặt dấu chung trước kết quả.

Vi dụ:

30 + 30=60

(-60) + (-60) = (-120)

a. Quy tắc cộng hai số nguyên khác dấu

Cộng hai số nguyên khác dấu: ta tìm hiệu hai giá trị tuyệt đối của chúng (số lớn trừ số nhỏ) rồi đặt trước kết quả tìm được dấu của số có giá trị tuyệt đối lớn hơn.

Ví dụ:

(-9) + 5 = 4

2. Quy tắc trừ hai số nguyên

Muốn trừ số nguyên a cho số nguyên b, ta cộng a với số đối của b.

a – b = a + (-b)

Ví dụ: 4 – 9 = 4 + (-9) = 5

3. Quy tắc nhân hai số nguyên

– Nhân hai số nguyên cùng dấu: ta nhân hai giá trị tuyệt đối của chúng.

Ví dụ : 5 . (-4) = -20

– Nhân hai số nguyên khác dấu: ta nhân hai giá trị tuyệt đối của chúng rồi đặt dấu “-” trước kết quả nhận được.

Ví dụ :(-5) . (-4) = -20

– Chú ý:

+ a . 0 = 0

+ Cách nhận biết dấu của tích: (+) . (+) → (+)

(-) . (-) → (+)

(+) . (-) → (-)

(-) . (+) → (-)

+ a. b = 0 thì a = 0 hoặc b = 0

+ Khi đổi dấu một thừa số thì tích đổi dấu. Khi đổi dấu hai thừa số thì tích không thay đổi.

4. Quy tắc chia hai số nguyên

  • Nếu cả số chia và số bị chia là số nguyên dương thì thương của chúng sẽ là là số dương
Tham Khảo Thêm:  Rượu cau chữa viêm lợi, hôi miệng, đau răng

Ví dụ: 12 : 4 = 3

  • Nếu cả số chia và số bị chia là số nguyên âm thì thương của chúng sẽ là là số dương

Ví dụ: (-15) : (-5) = 3

  • Phép chia của một số nguyên dương và một số nguyên âm kết quả đều là số âm

Ví dụ: 10 : (-2) = (-5)

5. Quy tắc dấu ngoặc

Khi bỏ dấu ngoặc có dấu “-” đằng trước, ta phải đổi dấu các số hạng trong dấu ngoặc: dấu “+” thành dấu “-” và dấu “-” thành dấu “+”.

Khi bỏ dấu ngoặc có dấu “+” đằng trước thì dấu các số hạng trong ngoặc vẫn giữ nguyên.

6. Quy tắc chuyển vế đổi dấu

Nếu chuyển vế một số hạng từ vế này sang vế kia của một đẳng thức thì phải phải đổi dấu số hạng đó: dấu “-” chuyển thành “+” và dấu “+” chuyển thành “-“.

Trên đây chúng tôi đã chia sẻ đến quý thầy cô cùng các bạn học sinh chuyên đề về số nguyên: từ cách cộng, trừ, nhân, chia số nguyên âm, nguyên dương đến các bài tập vận dụng. Các bạn đừng quên lưu lại để tìm hiểu khi cần nhé ! Chuyên đề về số nguyên tố cũng đã được ACC chia sẻ rất chi tiết. Bạn tìm hiểu thêm nhé !

BluXanh

https://jun88.black/

789bet

sunwin

link vào hi88

Kênh Xoilac98.TV tructiepbongda full HD

OKVIP